Next Generation Traffic Control System    Driven by the rapid development of information and vehicular technologies, we are on the cusp of a revolution in transportation on a scale not seen since the introduction of automobiles. For instance, smart mobile devices retrieve users’ geolocations, enable ubiquitous communications, and allow instant peer-to-peer interactions, giving rise to various on-demand mobility services for goods and people such as ridesourcing and ridesharing, as well as crowd-sourced urban delivery. Connected and automated vehicle (CAV) technologies will further revolutionize urban and rural mobility and support a range of uses, from sole vehicle ownership to shared ownership, ridership, and subscription services. These technologies hold the potential to substantially improve traffic safety, facilitate mobility, and reduce traffic congestion, fuel consumption, and emissions.
  Cyber Security    Traditional traffic control system is usually isolated in terms of connectivity. With the development of connected vehicle (CV) technology, vehicles and infrastructure will be connected through wireless communications, which might open a new door for cyber attackers. While most of the current cyber-security research are focusing on the vehicle side, a systematic study of the vulnerabilities of the existing traffic control system, and corresponding remedies need to be established.
Mcity Augmented Reality 
  This technology develops an augmented reality environment for connected and automated vehicle (CAV) testing and evaluation, in which background traffic is generated in microscopic simulation and provided to testing CAVs. The augmented reality combines the real-world testing facility (Mcity) and a simulation platform, in which movements of testing CAVs and traffic signals in the real-world can be synchronized in simulation, while simulated traffic information can be provided to testing CAVs. Testing CAVs “think” they are surrounded by other vehicles and adjust behaviors accordingly. At the same time, behaviors of simulated vehicles are also influenced by the testing CAVs. Information between real world and simulation is transmitted through DSRC. Two testing scenarios are developed: red-light running and railway crossing.
  SMART-Signal   Although measuring and archiving freeway traffic performance using commonly available loop detector data has become a norm for many transportation agencies, similar approaches for urban arterials do not exist. In practice, operational data from traffic signal systems are neither stored nor analyzed, which prevents proactive management of arterial streets. The development of the SMART-Signal (Systematic Monitoring of Arterial Road Traffic Signals) system fills in this gap. The SMART-Signal system simultaneously collects event-based high-resolution traffic data from multiple intersections and generates real-time arterial performance measures including intersection queue length and arterial travel time. The development of the system has laid the groundwork for better traffic models and control strategies and opens up entirely new opportunities for managing traffic on congested roads.
  Traffic Behavioral Study on the Effects of the I-35W Bridge Collapse    The I-35W Mississippi River bridge (officially known as Bridge 9340) was an eight-lane, steel truss arch bridge that carried Interstate 35W across the Saint Anthony Falls of the Mississippi River in Minneapolis, Minnesota, United States. During the evening rush hour on August 1, 2007, it suddenly collapsed, killing 13 people and injuring 145. Immediately after the collapse, help came from mutual aid in the seven-county Minneapolis-Saint Paul metropolitan area and emergency response personnel, charities, and volunteers. Within a few days of the collapse, the Minnesota Department of Transportation (Mn/DOT) planned a replacement bridge, the 10-lane I-35W Saint Anthony Falls Bridge. Construction was completed rapidly, and it opened on September 18, 2008. Although the capacity of the new bridge is larger, the daily traffic volume drops, comparing to the old bridge. What's going on?